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The displacement height appears in the logarithmic velocity profile for rough-wall 
boundary layers as a reference height for the vertical co-ordinate. It is shown that 
this height should be regarded as the level at  which the mean drag on the surface 
appears to act. The equations of motion then show that this also coincides with the 
average displacement thickness for the shear stress. 

A simple analytical model, experimental results and dimensional analysis are all 
used to indicate how the displacement height depends upon the detailed geometry of 
the roughness elements. 

1. Introduction 
The engineering and meteorological literature relating to turbulent flow over rough 

surfaces contains a great deal of confusion about the displacement height d, which 
appears in the customary logarithmic law for the velocity profile; 

u 1 z-d  - = -In-. 
u* K zo 

For common types of surface cover the roughness length zo is observed to increase 
with the heights of the roughness elements, so it is regarded M the basic measure of 
the degree of surface roughness. In using a surface-friction law to estimate shear stress 
it is true that zo is by far the more significant parameter and that d may be neglected 
or approximated accordingly. However this is not permissible if one is trying to 
determine zo for a particular surface. This can only be done by fitting the log-law to a 
measured velocity profile, and in atmospheric measurements especially one typically 
does not know UJK, d or zo so all three have to be found from a velocity profile mea- 
sured at  perhaps five or six heights. In  order to reduce the standard error of the results 
d is often given an assumed value (usually zero). However, Oke (1974) points out that 
one effect of doing this may be just to increase the scatter in zo (and perhaps the von 
K&rm&n constant K )  obtained by different investigators for the same type of roughness. 
Our aim here is to establish a physical meaning for d and to investigate how it depends 
on the variables describing the geometry and layout of a rough surface, that it may be 
better estimated in practical situations. 

The most obvious definition of displacement height is that it is the average surface 
elevation (sometimes called the geometric height); that is, the level which would be 
obtained by flattening out all the roughnesses into a smooth surface. An extension to 
this idea is that all regions of separated flow should be considered as part of the 



16 P. S. Jackson 

Wake layer 

Wall layer 

- _ A  - - - _ _  

t k  
FIGURE 1. Regions of boundary-layer flow (not to  scale). 

roughness elements before the levelling process is carried out. Sayre & Albertson 
(1963) have considered both definitions, and show that neither leads to a consistent 
experimental value for the von K&rm&n constant. 

More recently Thom (197 1) found experimentally that the displacement height of 
a dense needle-like roughness was 109 2 mm and that the centre of moment of the 
forces acting on the elements was 108 3 mm. This remarkably close coincidence led 
him to suppose that for all types of roughness the displacement height is ‘the level of 
the actual mean momentum sink’. It is shown below that this definition of d is implicit 
in the way the logarithmic law is derived, although it is not usually stated. It is then 
shown that this definition also leads to a new interpretation for the displacement 
height in zero pressure gradient flows. 

2. Logarithmic law 
The logarithmic profile for the mean velocity now has so much experimental and 

theoretical support that it is usually taken for granted. However, since the zero-plane 
displacement height is of particular interest here, it is necessary to reconsider the 
logarithmic expression in which it appears, paying particular attention to the 
assumptions used to derive it with the familiar arguments of similarity and dimen- 
sional analysis. We shall consider a turbulent boundary layer flowing over a rough 
surface for which both the boundary-layer thickness and the horizontal scale on which 
the flow is developing are much greater than any dimension defining the roughness 
elements. The layer is subdivided into wall and wake regions, and an interfacial 
layer, as sketched in figure 1. 

The height ai is defined as that above which the flow is not affected by individual 
roughness elements. There is then no mean flow across z = a,, and in the absence of 
an external horizontal pressure gradient the mean stress experienced by the base of 
the wall layer must equal the average horizontal force per unit plan area, 70, acting 
on the surface. If the average moment per unit plan area exerted by these forces is M ,  
then the level of action of r,, is a distance M / r O  above any arbitrary origin for the 
vertical co-ordinate z. It is now postulated that the wall layer depends primarily on 
ro but only weakly on any other property of the flow in the interfacial layer; similarly 
it cannot distinguish any details of the surface except the level a t  which this stress 
appears to act. The appropriate velocity scale and apparent origin for the wall layer 
are therefore u* and z = d respectively, where 

u* = (r0/p)&, d = M/r, .  (1) 
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If the wall layer is sufficiently remote from the free stream that the free-stream 
velocity uo and overall boundary-layer thickness S do not affect it directly, then the 
mean velocity there can be written 

Here h is a typical roughness height and the hi are other length scales defining the 
roughness geometry. 

In  the outer wake region the velocity is nearly equal to the free-stream value uo. 
The distance from the wall is comparable with the boundary-layer thickness, 6, and 
since this is much greater than any roughness dimension it follows that 

z-d  
u = uo+u*g(4). (3) 

Here the use of u* and the same displacement height d are required by the next step. 
If there is a region where these two layers overlap, then equating the derivatives of 

(2) and (3) there and multiplying by (z  - d )  gives 

z - d  z-d 
( T ) f '  = (+, 

where the prime indicates differentiation by the variable containing z in each case. 
By separation of variables both sides are independent of ( z - d )  and equal to u*/K, 
say, when equation (2) becomes 

or 

where zo/h is a function of hu,/v, A/h, etc. The function g is also logarithmic, and 
equatins (2) and (3) in the overlap region gives 

1 s  

u* K zo 
3 = -ln - -t constant. 

This derivation of the log-law makes it clear that d has a dynamic significance. 
Whatever the origin of z, the displacement height d adjusts the reference level for the 
velocity profile to the height at  which the mean surface shear appears to act. Further, 
in any particular problem the balance of horizontal forces (on a larger scale than that 
considered here) leads to an estimate for 8. For example, in pipe flow 6 corresponds to 
the pipe radius, in the planetary boundary layer it depends on u*/f (wheref is Coriolis 
acceleration) and on flat self-preserving boundary layers 6/(s) is proportional to 
X ( U * / U ~ ) ~  (Townsend 1976). Therefore, given uo, the roughness length zo is the length 
scale which expresses the magnitude of forces which act on the surface (via equation 
( 5 ) ) ,  whereas d is related to the distribution of these forces. 
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FIQURE 2. d / h  versus A ;  -o-, Counihan (1971); +, Lee & Soliman (1977). 

3. Dimensional analysis and drag partition 

of the rough surface will be examined. The derivation above gave 
In this section the relationship between the lengths zo and d and the actual geometry 

A second expression can be obtained using the definition of d .  If D is the drag on a 
single roughness element the moment on the element due to horizontal forces can be 
written c,hD, where c, is the appropriate moment coefficient. If there are n elements 
in an area S the total moment on the area is nc,hD whereas the total drag is pugS. 
Equation (1) then leads to . ,  

d nD 
hc, puiS’ 
-=- (7) 

in which the right-hand side can be recognized as the proportion of total drag carried 
by the upstanding roughness elements. This drag partition will be a function of 
element height, shape and spacing, so that d/h can be expressed as a function of these 
variables analogous to equation (6). Thus although zo and d are used to describe the 
parts of the flow which do not feel the effects of individual roughness elements, each is 
nevertheless influenced by the details of the surface geometry. 

Further progress can be made with the aid of postulates about the drag partition. 
First suppose that the roughness elements are so widely spaced that the velocity 
profile incident on each element is virtually independent of the element density. 
Then the drag on an element of frontal area A, could be written 

D = P U ~ C D  A,  

and so d /h  = c,c,h, where h = nA,/S. (8) 
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Roughness type h d l h  Source 

Cubes 0.34-2.4 mm 0.73 O’Loughlin & Annambhotla (1 969) 

Sand roughness 2 mm 0-72 Blihco & Partheniades (1971) 

Sand roughness 2-9 mm 0.65-0.69 Grass (1971) 

Sand roughness 0.5-38 mm 0-71 Kamphius (1 974) 

Densely packed rods 0.14 m 0.77 Thom (1971) 

Crops and forests 1-8 m 0.54-0.84 Kondo (1971) 

Grass --f forest 0.02-20 m 0.64 Stanhill (1969) 

TABLE 1. Measurements of d l h  for common roughness types. 

For this very sparse array the drag and moment coefficients will be independent of 
the element spacing A, whereupon for a given type of roughness d / h  is linearly depen- 
dent on A. Counihan (1971) and Lee & Soliman (1977) studied the effect of A on the 
d / h  inferred by fitting equation (4) to measured velocity profiles. Their results are 
consistent with the predicted linear relationship, as shown in figure 2, even at values 
of A which are much too high to satisfy the assumptions leading to equation (8). 

In the other extreme of closely packed elements there will be little friction drag on 
the intervening surface and so the drag partition will approach unity. In that case 
equation (7) gives d / h  = c,. This result has an immediate application in that the 
moment coefficient (which is relatively difficult to measure) can be estimated by 
measuring the displacement height of the velocity profile. There are numerous 
measurements of d/h  available for various roughnesses, but there appears to be none 
with the corresponding data for c,. However, in Thom’s (1971) experiment the drag 
was clearly all carried by the needle-like roughness elements, so Thom was able to 
calculate the level of action of the drag force (though he did not measure this directly) 
and show that it did coincide with the displacement height of the velocity profile 
above the roughness. 

Table 1 collects together other values of d /h  from measurements in pipe flow, 
agricultural meteorology, hydraulics and wind engineering. Over an exceptionally 
large range of roughness the approximation d / h  = 0-7 is remarkably good. The 
explanation for this must be that the rough surfaces which are commonly encountered 
have a similar density of roughness elements (A) .  Counihan (1971) and Lee & Soliman 
(1977) made wind-tunnel experiments in which A was varied over a wide range, with 
the expected result that d / h  increases as the surface density of roughnesses increases 
whereas z,/h fist increases and then decreases. 

Perry, Schofield & Joubert (1969) also made some important measurements on 
two-dimensional roughness elements in which A was varied. They chose to use the 
Clauser rough-wall profile referenced to a distance E below the roughness tops, 

and found that 
Au 1 eu - = -In-*+B, 
U* K V 
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FIQURE 3. An idealized rough surface. 

where A and B are constants. Comparing these results with equation (4) leads to the 
result E = h-d, and also that 

6 h-d -=-- - constant 
20 20 

for this type of roughness. Now for many common rough surfaces it is found that 
~ / h  is a constant - Perry et al. called these ' k '-type roughnesses, for which i t  follows 
that zo/h and zo/d are also constants. They also distinguished a different 'a'-type 
roughness in which the elements are so close togetherathat the flow effectively 
skims across the gaps. For these Perry et al. found B = - 0.4 and A = 5.1, which 
leads to d = h - 92,. Thus as the elements are crowded closer and closer together so 
that the apparent roughness (z,,) decremes, the displacement height will approach the 
level of the tops of the roughnesses as expected. 

4. The displacement thickness for total shear stress 
The displacement height d has been interplvited as the height a t  which the average 

drag on the surface appears to act. Using the equations of motion, it is not difficult to  
calculate the moment and drag on the surface in terms of the mean fluid properties. 
Equation (1) then leads to yet another interpretation for the displacement height. 

We consider the flow in the interfacial layer over an idealized rough surface as 
shown in figure 3. It is assumed that there is no difference between fluid variables at 
sections A B  and DC. The roughness is assumed to be two-dimensional for simplicity, 
but the same results are obtained for more general shaps. 

The appropriate equations are those of horizontal momentum and continuity 
averaged over time and over the third direction; 



Displacement height in the logarithmic velocity profile 21 

Here the stresses Tll and zz include the Reynolds stresses, so u and w are the mean 
velocity components. If equation (9) is integrated over x, then multiplied by z and 
integrated over z, we obtain for the rectangle DABCD: 

and for DEFQD, since u and TI, vanish on a solid vertical boundary, 

Since there are no differences between flow variables at  sections AB and CD the left- 
hand side of equation (1 1) is zero. Adding to (12) gives 

where M is the moment on the surface due to horizonkc1 forces only and the double 
integral is taken over the fluid contained in the region ABCDEFCA. Noting that 

/Ifluid dx dz = IOL 8, dx - M, 

we can write the above equation as 

where we have taken [Tlz-puw]O=8i = 70 to be independent of x in accordance with 
the requirement that individual roughnesses do not affect the flow a t  this level. The 
total horizontal force acting on the surface is the same as that applied to BC; 

D = h0. (14) 

This force appears to act at a height of d given by equation (1); using (13) and (14) 

where E is the average elevation of the surface, 5 = kh/L. 
The right-hand side of this equation is seen to be the average displacement thickness 

of the total stress T12 -puw, aa follows. This stress gradually decreases with height as 
the momentum of the flow is extracted by the drag forces on the roughness elements. 
At an arbitrary section a displacement thickness for this stress may therefore be 
constructed as shown in figure 4. The local average value of this thickness is then 

given by the operation L-l [Idx, the final result being the right-hand side of 

equation (15). The appearance of the term -puw in this expression means that the 
so-called ‘ wave-induced ’ stresses are included as part of the total shear stress. These 
stresses arise from spatial averaging of flows which are periodic in space (as here), so 
they are analogous to the Reynolds stresses which result from time averaging. 

so” 
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FIGURE 4. Typical shear-stress profile and corresponding displacement thickness. 

FIGURE 5. Reference levels for a rough surface. 

If three-dimensional roughnesses are considered the same results are obtained. The 
definition (1) ford is still valid. The length m in (15) is still the average surface elevation 
(as defined in 5 l) ,  and the integral in (15) is made over a fluid volume with L replaced 
by the corresponding plan area so the overall expression is again the average displace- 
ment thickness for the stress. However, if the condition that no boundary-layer 
development takes place on the length scale L is relaxed, or overall horizontal pressure 
gradients are included, the expression corresponding to (15) becomes much more 
complicated and has no obvious physical significance. 
To illustrate the implications of equation (15), we consider the roughnesses shown 

in figure 5. The reference level for the surface is not defined initially - the top of the 
elements would be no more an obvious choice than their base - so we have used an 
arbitrary origin, 0. The first result of (15) is then that this reference must be adjusted 
to the average elevation of the roughnesses. If anything it is this elevation which is 
the intuitive choice of reference, and it is gratifying to have this confirmed. But this 
height is then adjusted again by an amount corresponding to the stress displacement 
thickness, which we denote by A. Now, if the elements of roughness are widely spaced 
then the stress would be constant over most of the fluid and thus A would be small 
(relative to h) .  Similarly, E would be only slightly greater than zl, so the overall d 
would be slightly above the base of the roughnesses. At  the opposite extreme where the 
roughnesses are so dense that their tops are actually touching, the shear stress in the 
fluid trapped beneath would be zero. According to (15) the displacement height is 
then z1 + h as we expect, and moreover, if the stagnant fluid were replaced by solid 
material, exactly the same result for d would appear. 
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FIUTJRE 6. Calculated d / h  and z,/h for rod-like roughness elements. 

5. A derivation of d for rod-like roughness 
In  order to use equation (15) to predict d, it is clear that the displacement thickness 

for the stress must fist be found. In  many cases this will be extremely difficult, if not 
impossible, so this will not be a sensible way of finding d unless the nature of the flow 
around the roughness elements is particularly well understood. This is the case for 
long rod-like roughnesses, for which an expression for the displacement height is 
obtained below. Although the results are reasonable this solution haa a number of 
deficiencies, so what follows should be viewed primarily as an illustration of the 
implications of equation (15). 

For long rod-like roughnesses the momentum equation can be written 

where c, is the drag coefficient of a single element and h is now the frontal area of 
rough.no:s per unit plan area unoccupied by roughnesses. A second ‘closure’ equation 
is needel - Inoue (1963) assumed that the mixing length 1 is independent of height, 
where 

(17) = u ea(dh-1) and thus found h 

where a is the attenuation coefficient 

a = cDAh2/412. 

This expression cannot be correct near z = 0 where u must vanish, but nevertheless it 
has often been found to be a good approximation to the velocity profile in rod-like 
canopies. Cionco (1972) has obtained values of a for different roughness types by 
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fitting equation (17) to measured velocity profiles. He found that a lies in the range 
1-2 for moderately dense arrays of semi-rigid elements (like mature corn and some 
types of trees). 

Equations (16) and (17) can be used to find Tlz, and an expression for d is then 
found by substitution into equation (15) (where the uw term is now zero). The final 
result is, assuming w 4 h, 

(18) 
d - - 1 - (1 - e-%a)/2a. 
h -  

This expression is plotted in figure 6. For the typical range 1 < Q < 2, it is seen that 
the predicted values of d / h  agree well with those of table 1. 

The solution can be continued to predict zo by matching the velocity and shear 
stress with the logarithmic velocity profile a t  an appropriate height. Matching at 
z = h leads to 

which cannot be evaluated without a reasonable value for l h / h .  For example if it is 
assumed that Zh for small values of a retains its smooth-wall value ( I A  = Kh at z = h) 
then we find 

This expression is also plotted in figure 6, where again the range 1 < a < 2 gives good 
agreement with an average value for vegetation, zo/h = 0.15. 

6. Conclusions 
Once the displacement height d is recognized as the elevation at  which the mean 

drag appears to act on the flow well above the surface roughness elements, it is readily 
shown to correspond also to the average displacement height of the total shear stress. 
This result has been shown to be intuitively appealing and to agree with the available 
experimental results. It has also been demonstrated that d is determined by the 
distribution of forces on the surface, whereas the roughness length zo is determined by 
the magnitude of these forces. 

A simple analytical solution for rod-type roughnesses and a wide range of experi- 
mental results both show that the variation of roughness heights about the average 
elevation is the primary factor on which d depends. In  many commonly encountered 
types of roughness the expression d = 0.7 times roughness height gives a good estimate. 
However, it  is also clear that d may be strongly dependent on the density of roughness 
elements. 

Most of this research was carried out at the Mechanical Engineering Department of 
Auckland University, but the author is pleased to acknowledge the hospitality of the 
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